Model Estimation in Nonlinear Regression Under Shape Invariance

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Nonlinear Regression: Parameter Estimation under Nonconvexity

We study parameter estimation for sparse nonlinear regression. More specifically, we assume the data are given by y = f(x�β∗) + �, where f is nonlinear. To recover β∗, we propose an �1regularized least-squares estimator. Unlike classical linear regression, the corresponding optimization problem is nonconvex because of the nonlinearity of f . In spite of the nonconvexity, we prove that under mil...

متن کامل

Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data

The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...

متن کامل

Semiparametric Estimation under Shape Constraints

Substantial structure and restrictions, such as monotonicity and curvature constraints, necessary to give economic interpretation to empirical findings are often furnished by economic theories. Although such restrictions may be imposed in certain parametric empirical settings in a relatively straightforward fashion, incorporating such restrictions in semiparametric models is often problematic. ...

متن کامل

Semiparametric Binary Regression Models under Shape Constraints

We consider estimation of the regression function in a semiparametric binary regression model defined through an appropriate link function (with emphasis on the logistic link) using likelihood-ratio based inversion. The dichotomous response variable ∆ is influenced by a set of covariates that can be partitioned as (X,Z) where Z (real valued) is the covariate of primary interest and X (vector va...

متن کامل

Quantile Regression Estimation of Nonlinear Longitudinal Data

This paper examines a weighted version of the quantile regression estimator defined by Koenker and Bassett (1978), adjusted to the case of nonlinear longitudinal data. Different weights are used and compared by computer simulation using a four-parameter logistic growth function and error terms following an AR(1) model. It is found that the estimator is performing quite well, especially for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 1995

ISSN: 0090-5364

DOI: 10.1214/aos/1176324535